Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Toxicology ; : 153805, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621634

RESUMO

Moon dust presents a significant hazard to manned moon exploration missions, yet our understanding of its toxicity remains limited. The objective of this study is to investigate the pattern and mechanism of lung inflammation induced by subacute exposure to moon dust simulants (MDS) in rats. SD rats were exposed to MDS and silica dioxide through oral and nasal inhalation for 6hours per day continuously for 15 days. Pathological analysis indicated that the toxicity of MDS was lower than that of silica dioxide. MDS led to a notable recruitment and infiltration of macrophages in the rat lungs. Material characterization and biochemical analysis revealed that SiO2, Fe2O3, and TiO2 could be crucial sources of MDS toxicity. The study revealed that MDS-induced oxidative stress response can lead to pulmonary inflammation, which potentially may progress to lung fibrosis. Transcriptome sequencing revealed that MDS suppresses the PI3K-AKT signaling pathway, triggers the Tnfr2 non-classical NF-kB pathway and IL-17 signaling pathway, ultimately causing lung inflammation and activating predominantly antioxidant immune responses. Moreover, the study identified the involvement of upregulated genes IL1b, csf2, and Sod2 in regulating immune responses in rat lungs, making them potential key targets for preventing pulmonary toxicity related to moon dust exposure. These findings are expected to aid in safeguarding astronauts against the hazardous effects of moon dust and offer fresh insights into the implications and mechanisms of moon dust toxicity.

2.
J Integr Plant Biol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629459

RESUMO

Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.

3.
World J Clin Cases ; 12(8): 1523-1529, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38576807

RESUMO

BACKGROUND: Eccrine porocarcinoma (EPC) is a rare skin tumor that mainly affects the elderly population. Tumors often present with slow growth and a good prognosis. EPCs are usually distinguished from other skin tumors using histopathology and immunohistochemistry. However, surgical management alone may be inadequate if the tumor has metastasized. However, currently, surgical resection is the most commonly used treatment modality. CASE SUMMARY: A seventy-four-year-old woman presented with a slow-growing nodule in her left temporal area, with no obvious itching or pain, for more than four months. Histopathological examination showed small columnar and short spindle-shaped cells; thus, basal cell carcinoma was suspected. However, immunohistochemical analysis revealed the expression of cytokeratin 5/6, p63 protein, p16 protein, and Ki-67 antigen (40%), and EPC was taken into consideration. The skin biopsy was repeated, and hematoxylin and eosin staining revealed ductal differentiation in some cells. Finally, the patient was diagnosed with EPC, and Mohs micrographic surgery was performed. We adapted follow-up visits in a year and not found any recurrence of nodules. CONCLUSION: This case report emphasizes the diagnosis and differentiation of EPC.

4.
Mikrochim Acta ; 191(5): 271, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632191

RESUMO

Pathogen infections including Shigella flexneri have posed a significant threat to human health for numerous years. Although culturing and qPCR were the gold standards for pathogen detection, time-consuming and instrument-dependent restrict their application in rapid diagnosis and economically less-developed regions. Thus, it is urgently needed to develop rapid, simple, sensitive, accurate, and low-cost detection methods for pathogen detection. In this study, an immunomagnetic beads-recombinase polymerase amplification-CRISPR/Cas12a (IMB-RPA-CRISPR/Cas12a) method was built based on a cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of S. flexneri in the laboratory. Firstly, S. flexneri was specifically captured and enriched by IMB (Shigella antibody-coated magnetic beads), and the genomic DNA was released and used as the template in the RPA reaction. Then, the RPA products were mixed with the pre-loaded CRISPR/Cas12a for fluorescence visualization. The results were observed by naked eyes under LED blue light, with a sensitivity of 5 CFU/mL in a time of 70 min. With no specialized equipment or complicated technical requirements, the IMB-RPA-CRISPR/Cas12a diagnostic method can be used for visual, rapid, and simple detection of S. flexneri and can be easily adapted to monitoring other pathogens.


Assuntos
Anticorpos , Shigella flexneri , Humanos , 60440 , Fluorescência , Recombinases
5.
Water Res ; 255: 121514, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38554633

RESUMO

The phosphorus-containing reagents have been proposed to remediate the uranium contaminated sites due to the formation of insoluble uranyl phosphate mineralization products. However, the colloids, including both pseudo and intrinsic uranium colloids, could disturb the environmental fate of uranium due to its nonnegligible mobility. In this work, the transport pattern and micro-mechanism of uranium coupled to phosphate and illite colloid (IC) were investigated by combining column experiments and micro-spectroscopic evidences. Results showed that uranium transport was facilitated in granular media by forming the intrinsic uranyl phosphate colloid (such as Na-autunite) when the pH > 3.5 and CNa+ < 10 mM. Meanwhile, the mobility of uranium depended greatly on the typical water chemistry parameters governing the aggregation and deposit of intrinsic uranium colloids. However, the attachment of phosphate on illite granule increased the repulsive force and enhanced the dispersion stability of IC in the IC-U(VI)-phosphate ternary system. The non-preequilibrium transport and retention profiles, HRTEM-mapping, as well as TRLFS spectra revealed that the IC enhanced uranium mobility by forming the ternary IC-uranyl phosphate hybrid, and acted as the coagulation preventing agent for uranyl phosphate particles. This observed facilitation of uranium transport resulted from the formation of intrinsic uranyl phosphate colloids and IC-uranyl phosphate hybrids should be taken into consideration when evaluating the potential risk of uranium migration and optimizing the in-situ mineralization remediation strategy for uranium contaminated environmental water.

6.
J Med Virol ; 96(3): e29533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483048

RESUMO

Cytidine/uridine monophosphate kinase 2 (UMP-CMP kinase 2, CMPK2) has been reported as an antiviral interferon-stimulated gene (ISG). We previously observed that the expression of CMPK2 was significantly upregulated after Zika Virus (ZIKV) infection in A549 cells. However, the association and the underlying mechanisms between CMPK2 induction and ZIKV replication remain to be determined. We investigated the induction of CMPK2 during ZIKV infection and the effect of CMPK2 on ZIKV replication in A549, U251, Vero, IFNAR-deficient U5A and its parental 2fTGH cells, Huh7 and its RIG-I-deficient derivatives Huh7.5.1 cells. The activation status of Jak-STAT signaling pathway was determined by detecting the phosphorylation level of STAT1, the activity of interferon stimulated response element (ISRE) and the expression of several interferon stimulated genes (ISGs). We found that ZIKV infection induced CMPK2 expression through an IFNAR and RIG-I dependent manner. Overexpression of CMPK2 inhibited while CMPK2 knockdown promoted ZIKV replication in A549 and U251 cells. Mechanically, we found that CMPK2 overexpression increased IFNß expression and activated Jak/STAT signaling pathway as shown by the increased level of p-STAT1, enhanced activity of ISRE, and the upregulated expression of downstream ISGs. These findings suggest that ZIKV infection induced CMPK2 expression, which inhibited ZIKV replication and serves as a positive feedback regulator for IFN-Jak/STAT pathway.


Assuntos
Interferon Tipo I , Núcleosídeo-Fosfato Quinase , Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Interferon Tipo I/genética , Replicação Viral , Receptores Imunológicos
7.
Artif Intell Med ; 149: 102777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462279

RESUMO

Accurate finger gesture recognition with surface electromyography (sEMG) is essential and long-challenge in the muscle-computer interface, and many high-performance deep learning models have been developed to predict gestures. For these models, problem-specific tuning of network architecture is essential for improving the performance, yet it requires substantial knowledge of network architecture design and commitment of time and effort. This process thus imposes a major obstacle to the widespread and flexible application of modern deep learning. To address this issue, we present an auto-learning search framework (ALSF) to generate the integrated block-wised neural network (IBWNN) for sEMG-based gesture recognition. IBWNN contains several feature extraction blocks and dimensional reduction layers, and each feature extraction block integrates two sub-blocks (i.e., multi-branch convolutional block and triplet attention block). Meanwhile, ALSF generates optimal models for gesture recognition through the reinforcement learning method. The results show that the generated models yield state-of-the-art results compared to the modern popular networks on the open dataset Ninapro DB5. Moreover, compared to other networks, the generated models have fewer parameters and can be deployed in practical applications with less resource consumption.


Assuntos
Gestos , Redes Neurais de Computação , Eletromiografia/métodos , Reconhecimento Psicológico , Atenção , Algoritmos
8.
Br J Pharmacol ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430056

RESUMO

BACKGROUND AND PURPOSE: Asthma is characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. The use of nicotinic agents to mimic the cholinergic anti-inflammatory pathway (CAP) controls experimental asthma. Yet, the effects of vagus nerve stimulation (VNS)-induced CAP on allergic inflammation remain unknown. EXPERIMENTAL APPROACH: BALB/c mice were sensitized and challenged with house dust mite (HDM) extract and treated with active VNS (5 Hz, 0.5 ms, 0.05-1 mA). Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts and cytokine levels. Lungs were examined by histopathology and electron microscopy. KEY RESULTS: In the HDM mouse asthma model, VNS at intensities equal to or above 0.1 mA (VNS 0.1) but not sham VNS reduced BAL fluid differential cell counts and alveolar macrophages expressing α7 nicotinic receptors (α7nAChR), goblet cell hyperplasia, and collagen deposition. Besides, VNS 0.1 also abated HDM-induced elevation of type 2 cytokines IL-4 and IL-5 and was found to block the phosphorylation of transcription factor STAT6 and expression level of IRF4 in total lung lysates. Finally, VNS 0.1 abrogated methacholine-induced hyperresponsiveness in asthma mice. Prior administration of α-bungarotoxin, a specific inhibitor of α7nAChR, but not propranolol, a specific inhibitor of ß2-adrenoceptors, abolished the therapeutic effects of VNS 0.1. CONCLUSION AND IMPLICATIONS: Our data revealed the protective effects of VNS on various clinical features in allergic airway inflammation model. VNS, a clinically approved therapy for depression and epilepsy, appears to be a promising new strategy for controlling allergic asthma.

9.
Biochem Biophys Res Commun ; 708: 149786, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38493545

RESUMO

Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.


Assuntos
Doenças Metabólicas , Doenças Mitocondriais , Humanos , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Álcoois Graxos/farmacologia , Álcoois Graxos/metabolismo , Catecóis/farmacologia , Frutose/metabolismo , Doenças Metabólicas/metabolismo , Doenças Mitocondriais/metabolismo
10.
Eur J Med Chem ; 269: 116314, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527379

RESUMO

OSMAC strategy is a useful tool for discovering series of metabolites from microorganism. Five new sambutoxin derivatives (1-2, 4, 8-9), together with seven known compounds (3, 5-7, 10-12), were isolated from Talaromyces sp. CY-3 under OSMAC strategy and guidance of molecular networking. Their planar structures and absolute configurations were determined by NMR, HRESIMS, ECD spectra and common biosynthetic pathway. In bioassay, compounds 1-12 showed cytotoxicity to tumor cell lines with IC50 values in the range of 1.76-49.13 µM. The antitumor molecular mechanism of 10 was also explored. In vitro compound 10 significantly inhibited the growth and proliferation of two lung cancer cell lines (A549 and H1703). Furthermore, colony formation, EdU analysis, flow cytometry and Western blot analysis showed that 10 could induce cell cycle arrest in G0/G1 phase by promoting the expression of p53 and p21. The molecular mechanism of its antitumor effects in vitro is that 10 arrests the cell cycle by activating the p21/CyclinD1/Rb signaling pathway and the p53 pathway. Our results identified a lead small molecule compound with efficient antitumor growth and proliferation activity.


Assuntos
Antineoplásicos , Piridinas , Talaromyces , Talaromyces/química , Antineoplásicos/química , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Estrutura Molecular
11.
Int Immunopharmacol ; 130: 111510, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38422766

RESUMO

OBJECTIVE: The objective of this study was to evaluate the effect and prognosis of transcatheter arterial chemoembolisation (TACE) combined with lenvatinib and cabozantinib in the treatment of advanced unresectable hepatocellular carcinoma (uHCC) and identify the predictors of prognosis related to cellular inflammation and body mass index (BMI). To the best of our knowledge, this is the first study to report the efficacy and prognosis of TACE combined with lenvatinib and cabozantinib in patients with uHCC and propose the neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) as predictors of response and survival outcomes in this context. METHODS: The clinicopathologic data of 217 patients with advanced uHCC who underwent TACE combined with systemic therapy (lenvatinib mesylate + cabozantinib) in the Department of Hepatobiliary Surgery, Dazhou Central Hospital between October 2017 and February 2020 were collected retrospectively, and the relevant parameters were analysed and compared. RESULTS: Univariate and multivariate logistic regression analyses showed that BMI, NLR, PLR and prothrombin time were independent factors for the objective response rate (ORR) of transformed therapy for uHCC (OR = 0.812 vs 1,290.68 vs 1.067 vs 0.626, 95 % CI: 0.719-0.897 vs 108.081-11,541.137 vs 1.037-1.099 vs 0.414-0.946, respectively, p < 0.05). The results showed that BMI, NLR and PLR had certain predictive values for the ORR in patients with liver cancer undergoing translational therapy (p < 0.05); the combined predictive effect of the three was the best, and the area under the curve (AUC) of BMI + NLR + PLR for predicting the ORR in patients with liver cancer undergoing translational therapy was 0.951 (95 % CI: 0.921, 0.964). A total of 181 patients experienced adverse reactions at different grades, including 104 cases at grade 1, 50 cases at grade 2, 22 cases at grade 3 and 5 cases at grade 4. There was a significant difference in overall survival (OS) between low- and high-NLR groups, low- and high-PLR groups and low- and high-BMI groups (χ2 = 9.644, 8.313 and 10.314, respectively, p < 0.05). There was a significant difference in progression-free survival (PFS) between the low- and high-NLR groups, the low- and high-PLR groups and the low- and high-BMI groups (χ2 = 8.965, 9.783 and 6.343, respectively, p < 0.05). CONCLUSION: Transcatheter arterial chemoembolisation combined with lenvatinib and cabozantinib is safe and effective in the treatment of advanced uHCC, with controllable adverse reactions. High NLR and PLR and low BMI values before treatment were independent risk factors for the ORR. Body mass index, NLR and PLR predicted responses to triple switch therapy and survival outcomes in uHCC. Patients with pretreatment NLR ≥ 2.96 and PLR ≥ 184.41 had worse OS and PFS rates. Patients with pretreatment BMI ≥ 23 kg/m2 had improved OS and a reduced risk of death.


Assuntos
Anilidas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Fenilureia , Piridinas , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Estudos Retrospectivos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Prognóstico , Linfócitos/patologia , Neutrófilos/patologia
12.
J Clin Transl Hepatol ; 12(2): 201-209, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343615

RESUMO

Exosomes are 60-120 nm diameter double-membrane lipid organelles discharged by cells. Various studies have shown that exosomes exert multiple functions in both physical and diseased processes, such as intercellular information exchange, immune response, and disease progression. Repeated chronic injury to the liver often leads to inflammation and liver fibrosis (LF), a disorder that, if unchecked, may progress to cirrhosis, liver failure, portal hypertension, and even hepatocellular carcinoma. As an essential component of host innate immunity against pathogen invasion, macrophages play an important role in modulating inflammation homeostasis by finely tuning the polarization process of macrophages into either M1 or M2 subtypes in response to different microenvironments. As a critical contributor to the inflammation process, macrophages also play a complex and instrumental function in the progression of LF. This review focuses on recent advancements in the role of macrophage-associated exosomes implicated in LF, including macrophage-released exosomes and macrophage-targeted exosomes. In addition, the progress made in exosome-based antifibrotic therapy by in vivo and in vitro studies is also highlighted.

13.
Heliyon ; 10(3): e25302, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322842

RESUMO

Deserts play a significant role in terrestrial ecosystems, but their importance is often underestimated in research due to the undervaluation of ecosystem services (ES), particularly the absence of environmental stakeholder perspectives. This study utilized the social science research methodology to investigate the identification and perceptions of desert ES, and the perceived changes in the significance and accessibility of these services following land use alteration among two groups with distinct livelihood strategies in the arid desert region of Northwest China. The study identified 28 ES; with water being the top priority for all; herbs, water and fodder were considered significantly reduced by 78.69 %, 55.74 % and 50.82 % of the PPG, while 62.69 %, 37.31 % and 32.84 % of the APG considered herbs, sense of belonging and link to ancestors to be significantly decreased. The research also explored the potential of social science research methods for assessing ES and contributing to understanding environmental stakeholders' needs and perceptions. It is recommended that future ecological conservation and land project development prioritizes the livelihoods, emotional well-being, and cultural needs of residents. This approach will contribute to the long-term sustainability of both the environment and the project, while also safeguarding the well-being of residents.

14.
Tissue Cell ; 87: 102316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301585

RESUMO

Prussian blue nanozymes (PBNs) with multiple enzyme activities are prepared and their activities of antitumor in nasopharyngeal carcinoma cells (CEN2) are also explored in this research. On the one hand, it shows that PBNs can exert the catalase-like (CAT-like) activity to decompose hydrogen peroxide (H2O2) into non-toxic H2O in CEN2 cells. The O2 release of H2O2 catalysed by PBNs effectively alleviates the hypoxic environment of tumors, which inhibits the glycolysis of tumor and reduces the production of lactic acid. On the other hand, we also find that PBNs also has peroxidase-like (POD-like) enzymatic activity, which can catalyze the production of·OH from H2O2 in tumor cells and result in tumor cell apoptosis. This study lays a solid biomedical foundation for the development of safe and non-toxic nanozymes, as well as the expansion of their application in tumor treatment.


Assuntos
Ferrocianetos , Peróxido de Hidrogênio , Neoplasias Nasofaríngeas , Humanos , Oxirredução , Carcinoma Nasofaríngeo
15.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L409-L418, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349124

RESUMO

Alveolar type I (ATI) cells cover >95% of the lung's distal surface and facilitate gas exchange through their exceptionally thin shape. ATI cells in vivo are replenished by alveolar type II cell division and differentiation, but a detailed understanding of ATI biology has been hampered by the challenges in direct isolation of these cells due to their fragility and incomplete understanding of the signaling interactions that promote differentiation of ATII to ATI cells. Here, we explored the signals that maintain ATII versus promote ATI fates in three-dimensional (3-D) organoid cultures and developed a human alveolar type I differentiation medium (hATIDM) suitable for generating ATI cells from either mixed distal human lung cells or purified ATII cells. This media adds bone morphogenetic protein 4 (BMP4) and removes epidermal growth factor (EGF), Wnt agonist CHIR99021, and transforming growth factor-beta (TGF-ß) inhibitor SB431542 from previously developed alveolar organoid culture media. We demonstrate that BMP4 promotes expression of the ATI marker gene AGER and HOPX, whereas CHIR99021 and SB431542 maintain expression of the ATII marker gene SFTPC. The human ATI spheroids generated with hATIDM express multiple molecular and morphological features reminiscent of human ATI cells. Our results demonstrate that signaling interactions among BMP, TGF-ß, and Wnt signaling pathways in alveolar spheroids and distal lung organoids including IPF-organoids coordinate human ATII to ATI differentiation.NEW & NOTEWORTHY Alveolar type I (ATI) epithelial cells perform essential roles in maintaining lung function but have been challenging to study. We explored the signals that promote ATI fate in 3-D organoid cultures generated from either mixed distal human lung cells or purified alveolar type II (ATII) cells. This work fills an important void in our experimental repertoire for studying alveolar epithelial cells and identifies signals that promote human ATII to ATI cell differentiation.


Assuntos
Células Epiteliais Alveolares , Benzamidas , Dioxóis , Alvéolos Pulmonares , Humanos , Alvéolos Pulmonares/metabolismo , Células Cultivadas , Células Epiteliais Alveolares/metabolismo , Pulmão , Diferenciação Celular , Fator de Crescimento Transformador beta/metabolismo
16.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377137

RESUMO

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Assuntos
Hemípteros , Inseticidas , Receptores Nicotínicos , Animais , Receptores Nicotínicos/genética , Inseticidas/farmacologia , Hemípteros/genética , Drosophila melanogaster , Neonicotinoides/farmacologia , Mutação
17.
Lipids Health Dis ; 23(1): 52, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378566

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is closely linked to metabolic syndrome, characterised by insulin resistance, hyperglycaemia, abnormal lipid metabolism, and chronic inflammation. Diabetic ulcers (DUs) comprise consequential complications that arise as a result of T2DM. To investigate, db/db mice were used for the disease model. The findings demonstrated that a scaffold made from a combination of rhubarb charcoal-crosslinked chitosan and silk fibroin, designated as RCS/SF, was able to improve the healing process of diabetic wounds in db/db mice. However, previous studies have primarily concentrated on investigating the impacts of the RSC/SF scaffold on wound healing only, while its influence on the entire body has not been fully elucidated. MATERIAL AND METHODS: The silk fibroin/chitosan sponge scaffold containing rhubarb charcoal was fabricated in the present study using a freeze-drying approach. Subsequently, an incision with a diameter of 8 mm was made on the dorsal skin of the mice, and the RCS/SF scaffold was applied directly to the wound for 14 days. Subsequently, the impact of RCS/SF scaffold therapy on hepatic lipid metabolism was assessed through analysis of serum and liver biochemistry, histopathology, quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blotting. RESULTS: The use of the RCS/SF scaffold led to an enhancement in the conditions associated with serum glucolipid metabolism in db/db mice. An assessment of hepatic histopathology further confirmed this enhancement. Additionally, the qRT-PCR analysis revealed that treatment with RCS/SF scaffold resulted in the downregulation of genes associated with fatty acid synthesis, fatty acid uptake, triglyceride (TG) synthesis, gluconeogenesis, and inflammatory factors. Moreover, the beneficial effect of the RCS/SF scaffold on oxidative stress was shown by assessing antioxidant enzymes and lipid peroxidation. Additionally, the network pharmacology analysis verified that the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway had a vital function in mitigating non-alcoholic fatty liver disease (NAFLD) by utilizing R. officinale. The measurement of AMPK, sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FASN), and acetyl CoA carboxylase (ACC) gene and protein expression provided support for this discovery. Furthermore, the molecular docking investigations revealed a robust affinity between the active components of rhubarb and the downstream targets of AMPK (SREBP1 and FASN). CONCLUSION: By regulating the AMPK signalling pathway, the RCS/SF scaffold applied topically effectively mitigated hepatic lipid accumulation, decreased inflammation, and attenuated oxidative stress. The present study, therefore, emphasises the crucial role of the topical RCS/SF scaffold in regulating hepatic lipid metabolism, thereby confirming the concept of "external and internal reshaping".


Assuntos
Quitosana , Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Fibroínas , Hepatopatia Gordurosa não Alcoólica , Rheum , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Rheum/metabolismo , Carvão Vegetal/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/uso terapêutico , Fibroínas/metabolismo , Fibroínas/farmacologia , Fibroínas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Simulação de Acoplamento Molecular , Úlcera/metabolismo , Úlcera/patologia , Fígado/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/patologia , Complicações do Diabetes/patologia , Inflamação/patologia , Ácidos Graxos/metabolismo , Lipídeos/uso terapêutico
18.
J Cell Mol Med ; 28(1): e18004, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864300

RESUMO

Nonsyndromic hearing loss (NSHL) is a genetically diverse, highly heterogeneous condition characterised by deafness, and Gasdermin E (GSDME) variants have been identified as directly inducing autosomal dominant NSHL. While many NSHL cases associated with GSDME involve the skipping of exon 8, there is another, less understood pathogenic insertion variant specifically found in Chinese pedigrees that causes deafness, known as autosomal dominant 5 (DFNA5) hearing loss. In this study, we recruited a large Chinese pedigree, conducted whole-exome and Sanger sequencing to serve as a comprehensive clinical examination, and extracted genomic DNA samples for co-segregation analysis of the members. Conservation and expression analyses for GSDME were also conducted. Our clinical examinations revealed an autosomal dominant phenotype of hearing loss in the family. Genetic analysis identified a novel insertion variant in GSDME exon 8 (GSDME: NM_004403.3: c.1113_1114insGGGGTGCAGCTTACAGGGTGGGTGT: p. P372fs*36). This variant is segregated with the deafness phenotype of this pedigree. The GSDME gene was highly conserved in the different species we analysed, and its mRNA expression was ubiquitously low in different human tissues. In conclusion, we have successfully identified a novel pathogenic insertion variant of GSDME in a Chinese pedigree that causes deafness, shedding light on the genetic basis of hearing loss within this specific family. Our findings expand the spectrum of known variants associated with GSDME-related deafness and may further support both the underlying gain-of-function mechanism and functional associations of GSDME hearing loss variants.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Linhagem , Perda Auditiva/genética , Surdez/genética , China , Mutação , Perda Auditiva Neurossensorial/genética
19.
Microorganisms ; 11(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138098

RESUMO

NRP1/CD304 is a typical membrane-bound co-receptor for the vascular endothelial cell growth factor (VEGF), semaphorin family members, and viral SARS-CoV-2. Cordycepin (CD) is a natural product or active gradient from traditional Chinese medicine (TCM) from Cordyceps militaris Link and Ophiocordyceps sinensis (Berk.). However, NRP1 expression regulation via CD in cancers and the potential roles and mechanisms of SARS-CoV-2 infection are not clear. In this study, online databases were analyzed, Western blotting and quantitative RT-PCR were used for NRP1 expression change via CD, molecular docking was used for NRP/CD interaction, and a syncytial formation assay was used for CD inhibition using a pseudovirus SARS-CoV-2 entry. As a result, we revealed that CD inhibits NRP1 expressed in cancer cells and prevents viral syncytial formation in 293T-hACE2 cells, implying the therapeutic potential for both anti-cancer and anti-viruses, including anti-SARS-CoV-2. We further found significant associations between NRP1 expressions and the tumor-immune response in immune lymphocytes, chemokines, receptors, immunostimulators, immune inhibitors, and major histocompatibility complexes in most cancer types, implying NRP1's roles in both anti-cancer and anti-SARS-CoV-2 entry likely via immunotherapy. Importantly, CD also downregulated the expression of NRP1 from lymphocytes in mice and downregulated the expression of A2AR from the lung cancer cell line H1975 when treated with CD, implying the NRP1 mechanism probably through immuno-response pathways. Thus, CD may be a therapeutic component for anti-cancer and anti-viral diseases, including COVID-19, by targeting NRP1 at least.

20.
Transl Cancer Res ; 12(10): 2764-2780, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969389

RESUMO

Background: In recent years, with the development of transcriptome sequencing, the molecular characteristics of tumors are gradually revealed. Because of the complexity of tumor transcriptome, there is a need to look for the molecular signatures which can be used to evaluate the tissue origin and cell stemness of tumors in order to promote the diagnosis and treatment of tumors. Methods: Tumor tissue-specific gene sets (TTSGs) consisting of 200 genes were selected using RNA expression data of 9,875 patients from 33 tumor types. t-distributed Stochastic Neighbor Embedding (t-SNE) was used for dimensionality reduction and visualization of TTSGs in each tumor type. To evaluate oncogenic dedifferentiation and loss of cell stemness, Euclidean distance from each sample to a human embryo single-cell RNA-seq dataset (GSE36552) of TTSGs was calculated as TTSGs index indicating dissimilarity of tumors and embryo. TTSGs index was evaluated for prognosis in each tumor type. Two published signature indexes, the mRNA signature index (mRNAsi) and CIBERSORT, were compared to assess the correlation between the TTSGs index with cell stemness and immune microenvironment. Finally, the difference of prognosis, immune microenvironment and radiotherapy outcomes were compared between patients with high and low TTSGs index. Results: In this study, all 33 tumor types in The Cancer Genome Atlas (TCGA) were embedded into isolated clusters by t-SNE and confirmed by k-nearest neighbors (kNN) algorithm. Clusters of squamous-cell carcinoma were adjacent to each other revealing similar histologic origin. Basal-like breast cancer was separated from luminal and HER-2-amplified subtypes and closed to squamous-cell carcinoma. TTSGs index was related to overall survival outcomes in cancers derived from liver, thyroid, brain, cervical and kidney. There was a positive correlation between mRNAsi and TTSGs index in pan-kidney and pan-neuronal cancers. Furthermore, cell fractions of M2 macrophages and total leukocytes increased in the group with higher TTSGs index. Patients with higher TTSGs index had longer overall survival time and less radiation therapy resistance compared to patients with lower TTSGs index. Conclusions: The signature of TTSGs is related to tumor expression features that distinguish tumors of different histologic origin using t-SNE. The signature also relates to prognosis of certain kinds of tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...